

Batch - 2004(M) [Medical]

Time : 3 Hours

Maximum Marks : 720

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose. You are not allowed to leave the Examination Hall before the end of the test.

INSTRUCTIONS

- 1. This booklet is your Question Paper containing 180 questions.
- 2. The test is of 3 hours duration. The question paper consists of 3 sections (Physics, Chemistry & Biology).
- 3. Each question carries **4 marks**. For each correct response the candidate will get **4 marks**. For each incorrect response, **one mark** will be deducted. The maximum marks are **720**.
- 4. Fill the bubbles completely and properly using a **Blue/Black Ball Point Pen** only.
- 5. Blank papers, clipboards, log tables, slide rules, calculators, cellular phones, pagers, and electronic gadgets in any form are not allowed to be carried inside the examination hall.
- 6. The answer sheet, a machine-readable Optical mark recognition sheet (OMR Sheet), is provided separately.
- 7. DO NOT TAMPER WITH / MUTILATE THE OMR OR THE BOOKLET.
- 8. Do not break the seals of the question-paper booklet before being instructed to do so by the invigilator.

Name of the Candidate (in Capitals)

Test Centre _____

Centre Code _____

Candidate's Signature

Invigilator's Signature

	MEWTON A TUTORIALS			
				PHYSICS
1.	The ratio of coefficients of	cubical expansion	and linear expansion is	
	(a) 1 : 1	(b) 3 : 1	(c) 2 : 1	(d) none of these
2.	Minimum amount of steam	of 100°C required	to melt 12gm ice completely	, will be
	(a) 1.5 gm	(b) 1 gm	(c) 2 gm	(d) 5 gm
3.	Work done in process <i>AB</i> w		A	
	(a) 900 J	$V = \frac{8}{(\text{litre})}$		
	(b)1500 <i>J</i>	(1110/3	B	
	(c) 3300 J		2 4	
	(d) 33 <i>J</i>		P (atm)	
4.	Three bodies A, B and C	of masses m, m	and $\sqrt{3} m$ respectively are	θ↑ τ
	graph for A, B and C are	shown by I, II a S_A , S_B and S_C res	temperature θ versus time <i>t</i> and III respectively. If their spectively then which of the ure of each body is 0°C)	Ш
	(a) $S_A > S_B > S_C$		(b) $S_B = S_C < S_A$	$\pi/3 \pi/4$
	(c) $S_A = S_B = S_C$		(d) $S_B = S_C > S_A$	
5.		<mark>d will be minimum</mark>	when a body is heated throu	gh
	(a) 1 K		(b) 1°C	
	(c) 1°F		× /	e in all the three cases
6.	At what temperature will (Temperature coefficient of			ree times its value at 0°C
	(a) 400°C	(b) 450°C	(c) 500°C	(d) 550°C
7.	A metallic ball has spherics of volume of cavity will	al cavity <mark>at its ce</mark> nt	re. If th <mark>e ball is</mark> heated, the r	atio of volume of ball to that
	(a) increase		(b) decrease	
	(c) remain same		(d) depends on the vo	plume of cavity
8.	.		1 0	vavelengths which are in the 1 be (assume same emissivity
	(a) 1 : 1	(b) $\frac{81}{16}$	(c) $\frac{16}{81}$	(d) $\frac{8}{27}$
9.	Heat energy absorbed by a	system in going the	rough a cyclic process shown	in figure is $\uparrow 30 \mid \mid \mid \mid \mid \mid \mid \mid$
	(a) $10^7 \pi J$			
	(b) $10^4 \pi J$			
	(c) $10^2 \pi J$			$10 30 \\ P(N/m^2) \longrightarrow$
	(d) $10^{-3} \pi J$			$P(\text{IN/III}) \longrightarrow$
10.	The temperature of cold jur The neutral temperature is	nction of a thermoc	couple is -20°C and the temp	erature of inversion is 560°C.
	(a) 270°C	(b) 560°C	(c) 1120°C	(d) 290°C

19. A body of mass *m* is kept stationary on a rough inclined plane of inclination θ . The magnitude of force acting on the body by the inclined plane is

(a)
$$mg$$
 (b) $mg \sin \theta$ (c) $mg \cos \theta$ (d) $mg\sqrt{1 + \cos^2 \theta}$

20. A block of metal weighing 2 kg is resting on a frictionless plane. It is struck by a jet of water at a rate of 1 kgs^{-1} at a speed of 5 ms⁻¹. The initial acceleration of the block is

(a) $\frac{2}{5}$ ms⁻² (b) $\frac{5}{2}$ ms⁻² (c) 5 ms⁻² (d) $\frac{1}{5}$ ms⁻² 21. The elevator shown in figure is descending with an acceleration of 2 m s⁻². The mass of the block *A* = 0.5 kg. The force exerted by the block *A* on the block *B* is (*g* = 10 ms⁻²)

(a) 2N (b) 4N

- (c) 6N
- 22. Two identical balls are projected, one vertically up and the other at an angle of 30° with the horizontal, with same initial speed. The potential energy at the highest point is in the ratio

(d) 8N

2ms⁻

A

<mark>=800N/m</mark>

8m

B↑5m

(d) 20 cm

- (a) 4:3 (b) 3:4 (c) 4:1 (d) 1:4
- 23. A particle is released from rest at origin. It moves under the influence of potential field $U = x^2 3x$, where U is in Joule and x is in metre. Kinetic energy at x = 2 m will be
 - (a) 2 J (b) 1 J (c) 1.5 J (d) 0 J

24. A block of mass m = 0.1 kg is released from a height of 4 m on a curved smooth surface. On the horizontal smooth surface it collides with a 4m spring of force constant 800 N/m. The maximum compression in spring will be $(g = 10 \text{ m/s}^2)$

(a) 1 cm (b) 5 cm (c) 10 cm

25. A block of mass 3 kg slides down a rough curved path from point A as shown. If it stops at C, the work done by friction is $(g = 10 \text{ ms}^{-2})$

- (a) -360 J (b) -240 J
- (c) -600 J (d) -450 J
- 26. A particle of mass *m* describes a circle of radius *r*. The centripetal acceleration of the particle is $4/r^2$. The momentum of the particle is

(a)
$$\frac{4m}{r}$$
 (b) $\frac{2m}{r}$ (c) $\frac{4m}{\sqrt{r}}$ (d) $\frac{2m}{\sqrt{r}}$

- 27. A metal ball of mass 2 kg moving with speed of 36 km/h has a head-on collision with a stationary ball of mass 3 kg. If after collision, both the balls move together, then the loss in kinetic energy due to collision is
 - (a) 40 J (b) 60 J (c) 100 J (d) 140 J

28. Two balls of masses $m_1 = 3$ kg and $m_2 = 2$ kg are moving towards each other with speeds u_1 and u_2 . The ball m_1 stops after collision and m_2 starts moving with speed u_1 . The co-efficient of restitution between the balls is

(a) zero (b) 1 (c)
$$\frac{2}{3}$$
 (d) $\frac{1}{2}$
29. The acceleration of centre of mass of the system shown in figure will be
(a) 10 m/s² (b) $-\frac{10}{3}$ m/s²
(c) $\frac{5}{3}$ m/s² (d) -5 m/s²

30. A thin circular ring of mass M and radius R is rotating about its axis with a constant angular velocity ω . Two objects, each of mass m, are attached gently to the opposite ends of a diameter of the ring. The ring rotates now with an angular velocity

(a)
$$\frac{\omega M}{M+m}$$
 (b) $\frac{\omega (M-2m)}{M+2m}$ (c) $\frac{\omega M}{M+2m}$ (d) $\frac{\omega (M+m)}{M}$

31. A disc of mass M and radius R rolls on a horizontal surface and then rolls up and inclined plane as shown in the figure. If the velocity of the disc is v, then height to which the disc will rise will be

- 32. A thick walled hollow sphere has outer radius *R*. It rolls down an inclined plane without slipping and its speed at bottom is v_0 . Now the incline is waxed so that the friction becomes zero. The sphere is observed to slide down without rolling and the speed now is $(5 v_0/4)$. The radius of gyration of the hollow sphere about the axis through its centre is
 - (a) $\frac{3R}{4}$ (b) $\frac{R}{2}$ (c) $\frac{R}{4}$ (d) $\frac{4}{5}R$
- 33. The escape velocity on the surface of the earth is 11.2 km/s. What would be the escape velocity on the surface of another planet of the same mass but 1/4 times the radius of the earth?
 - (a) 44.8 km/s (b) 22.4 km/s (c) 5.6 km/s (d) 11.2 km/s

34. The depth *d* at which the value of acceleration due to gravity becomes $\frac{1}{n}$ times the value at the surface, is (*R* = radius of the earth)

(a) $\frac{R}{n}$ (b) $R\left(\frac{n-1}{n}\right)$ (c) $\frac{R}{n^2}$ (d) $R\left(\frac{n}{n+1}\right)$

- 35. A metal wire of length L and radius r is clamped rigidly at one end. A force F is applied at another end so that its length increases by L. The increase in length of another metal wire of length 2L and radius 2r, when stretched by a force 2F, will be
 - (a) 2L (b) L (c) L/2 (d) L/4

36. A tuning fork of known frequency 256 Hz makes 5 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per second when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was

(a) 261 Hz (b) 258 Hz (c) 254 Hz (d) 251 Hz

37. If the temperature of the sun is increased from T to 2T and its radius from R to 2R, then the ratio of the radiant energy received on earth to what it was previously will be

(d) 64

/(m³) →

10

 $P(N/m^2)$

(a) 4 (b) 16 (c) 32

38. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$ as shown in figure. If the net heat supplied to the gas in the cycle is 5 J, the work done by the gas in the process $C \rightarrow A$ is

(a)
$$-5 J$$
 (b) $-10 J$

(d)
$$-20 J$$

- 39. If amount of heat given to a system be 50 J and work done on the system be 15 J, then change in internal energy of the system is
 - (a) 35 J (b) 50 J (c) 65 J (d) 15 J

40. The curved surface of uniform rod is thermally isolated from surrounding. Its ends are maintained at temperature T_1 and T_2 ($T_1 > T_2$). If in steady state temperature gradient at a distance x from hot end is equal to $\frac{dT}{dx}$, then which one of the following graphs is correct?

41. Temperature of source is 330°C. Temperature of sink is changed in order to increase the efficiency of engine from $\frac{1}{5}$ to $\frac{1}{4}$, by

- (a) $30^{\circ}K$ (b) 303 K (c) 603 K (d) 60 K
- 42. A body cools from 60°C to 50°C in 10 minutes. If the room temperature is 25°C and assuming Newton's law of cooling to hold good, the temperature of the body at the end of the next 10 minutes will be
 - (a) 38.5° C (b) 40° C (c) 42.85° C (d) 45° C

- 43. The amount of heat required will be minimum when a body is heated through
 - (a) 1 K (b) 1°C
 - (c) 1°F (d) it will be the same in all the three cases
- 44. A constant volume gas thermometer shows pressure reading of 50 cm and 90 cm of mercury at 0°C and 100°C respectively. When the pressure reading is 60 cm of mercury, the temperature is
 - (a) 25° C (b) 40° C (c) 15° C (d) 12.5° C
- 45. A hot body is being cooled in air according to Newton's law of cooling, the rate of fall of temperature being k times the difference of its temperature with respect to that of surroundings. The time, after which the body will lose half the maximum heat it can lose, is

	MEWTON A TUTORIAL S			
				CHEMISTRY
46.	The enthalpy of formation f - 286 KJ mol ^{-1} respectively			-
	(a) + 1412 KJ mol ⁻¹ (b)	$) - 1412 \text{ KJ mol}^{-1}$	(c) + 141.2 KJ mol ⁻¹	(d) $-141.2 \text{ KJ mol}^{-1}$
47.	The favourable conditions f	or a spontaneous reacti	ion are –	
	(a) $T\Delta S > \Delta H$, $\Delta H = +ve$,	$\Delta S = +ve$	(b) $T\Delta S > \Delta H$, $\Delta H = +ve$, $\Delta S = -ve$
	(c) $T\Delta S = \Delta H, \Delta H = -ve, \Delta H$	S = -ve	(d) $T\Delta S = \Delta H$, $\Delta H = +ve$	$\Delta S = +ve$
48.	Calculate the temperature a for a chemical reaction –	t which $\Delta G = -5.2 \text{ KJ}$	$\mathrm{mol}^{-1}, \Delta \mathrm{H} = 145.6 \mathrm{~KJ~mol}^{-1}$	$^{-1}$ and $\Delta S = 216 \text{ JK}^{-1} \text{ mol}^{-1}$
	(a) 698°C (b	o) 425°C	(c) 650 K	(d) 650°C
49.	The heat of atomisation of P P—P bond is	H ₃ (g) is 228 kcal mol ⁻¹	and that of $P_2H_4(g)$ is 355	kcal mol⁻¹. The energy of
	(a) 62 kcal (b) 51 kcal	(c) 52 kcal	(d) 53 kcal
50.	Which of the following state	ements is correct?		
	(a) Slope of adiabatic P-V of	curve is smaller than th	at in isothermal one	
	(b) Slope of the adiabatic P	-V curve will be same	as that in isothermal one	
	(c) Slope of adiabatic P-V of	curve will be larger tha	n in isothermal one	
	(d) Both (B) and (C)			
51.	Determine the value of ΔH Assume that water vapour (R = 20 cal mol ⁻¹ K ⁻¹).			
	(a) 2.83×10^6 (b)	b) 28.3 × 10 ⁶	(c) 2.83×10^{14}	(d) 283×10^6
52.	In which of the following ca	ase work <mark>done by</mark> the sy	yste <mark>m is ma</mark> ximum at the de	efinite external pressure?
	(a) $C(S) + \frac{1}{2}O_2(g) \longrightarrow C$	O(g)	(b) HCl (g) $\longrightarrow \frac{1}{2}$ H ₂ (g	$) + \frac{1}{2} Cl_2(g)$
	(c) $H_2O(\ell) \longrightarrow H_2O(g)$		(d) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow$	$H_2O(\ell)$
53.	The exothermic formaton of			
	$l_{2(g)} + 3F_{2(g)} \rightleftharpoons 2 \operatorname{ClF}_{3(g)}; \Delta$ equilibrium mixture of Cl_2 ,		f the following will increas	e the quantity of ClF ₃ in an
	(a) Removing Cl ₂		(b) Increasing the temper	ature
	(c) Adding F_2		(d) Increasing the volume	e of the container
54.	What is the equilibrium exp	ression for the reaction	$P_{4(S)} + 5O_{2(g)} \Longrightarrow P_4O_{10(s)}$,
	(a) $K_{C} = [P_4O_{10}] / [P_4] [O_2]^5$		(b) $K_{C} = [P_4O_{10}] / 5 [P_4] [$	O ₂]
	(c) $K_{\rm C} = [O_2]^5$		(d) $K_c = 1/ [O_2]^5$	
			-	

55.	The equilibrium consta	ant for the reaction N	$P_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ at ter	nperature T is 4×10^{-4} . The value
	of K_c for the reaction N	$NO_{(g)} \Longrightarrow \frac{1}{2}N_{2(g)} + \frac{1}{2}$	$O_{2(g)}$ at the same temperatu	ire is
	(a) 2.5×10^2	(b) 50	(c) 4×10^{-4}	(d) 0.02
56.				$d Z \rightleftharpoons P + Q$, respectively are in the ratio of total pressures at
	(a) 1:1	(b) 1 : 3	(c) 1:9	(d) 1:36
57.	and 0.50 atm pressure. flask. When the decom	Ammonium hydrog	gen sulphide decomposes t	monia gas at a certain temperature o yield NH_3 and H_2S gases in the pressure in the flask rises to 0.84 erature is –
	(a) 0.18	(b) 0.30	(c) 0.11	(d) 0.17
58.	What is the free energy to steam at 100°C and		.0 mole of water at 100°C	and 1 atm pressure is converted in
	(a) 540 cal	(b) – 9800 cal	(c <mark>) 9800 cal</mark>	(d) 0 cal
59.	100 ml of 1.0 N CH_3 resulting solution –	COOH are added to	100 ml of 1.0 N NaOH	solution. What will be the p^{H} of
	(a) 7.0	(b) > 7.0	(c <mark>) < 7.0</mark>	(d) Zero
60.	The solubility in water be –	r of a sparingly solub	le salt AB ₂ is 1.0 × 10 ⁻⁵ m	ol L ⁻¹ . Its solubility product will
	(a) 1×10^{-15}	(b) 1 × 10 ⁻¹⁰	(c) 4×10^{-15}	(d) 4×10^{-10}
61.			ids A,B,C and D are 6 × 1 1 molar aqueous solutions a	$10^{-4}, 5 \times 10^{-5}, 3.6 \times 10^{-6}, and 7 \times 10^{-6}$
	(a) $A < B < C < D$	(b) $A > B > C > I$	$\mathbf{D} \qquad (\mathbf{c}) \mathbf{A} = \mathbf{B} = \mathbf{C} = \mathbf{D}$	(d) A > B < C > D
62.	In a buffer solution X solution is –	and HX concentration	on are same. If K _b value fo	or X^{-} is 10 ⁻⁸ then p^{H} of the buffer
	(a) 8.0	(b) 6.0	(c) 4.0	(d) 10.0
63.	In the reaction $2Na_2S_2$	$_{2}O_{3} + I_{2} \rightarrow Na_{2}S_{4}O_{6}$	+ 2NaI, the oxidation sta	te of S is –
	(a) Increased	(b) Decreased	(c) Remains same	(d) None
64.	Which of following is	not a redox change?		
	(a) $2H_2S + SO_2 = 2H_2$	O + 3S	(b) $2BaO + O_2 = 2$	BaO ₂
	(c) $BaO_2 + H_2SO_4 = B$	$aSO_4 + H_2O$	(d) $2KClO_3 = 2KC$	$Cl + 3O_2$
Bo				

65.	In the following reaction						
	$4P + 3KOH + 3H_2O$ —	\rightarrow 3KH ₂ PO ₂ + PH ₃					
	(a) Only phosphorus is o	xidized	(b) Only phosphorous is	reduced			
	(c) Phosphorus is both or	xidised and reduced	(d) Phosphorus is neithe	er oxidised nor reduced			
66.	Write the IUPAC name of	of the following compoun	ıd				
	$CH_{3} - CH = CH - C - OI$	ч					
	$CH_3 = CH = CH_4$ $CH = CH_3$						
	(a) 2-ethenylbit-2-enric a	cid	(b) 2-ethylenebit-2-en	oic acid			
	(c) 2-Alkylenebit-2-enoic	acid	(d) none of these				
67.	Find the D.B. F.						
	\Diamond \smile						
	\heartsuit \times						
	A B	C					
	(a) A, B, C 4, 2, 4	(b) A, B, C 2, 4, 4	(c) A, B, C 4, 4, 2	(d) None of these			
68.	Which one of shows both	electrophile and nucleop	phile				
	(a) - N = O	(b) –OH	(c) -NH ₂	(d) –CH ₃			
69.	Which will show metame	ers					
	(a) $CH_3 - O - COC_3H_7$	(b) $CH_3 - O - C_3 H_7$	(c) $C_2H_5 - S - C_2H_5$	(d) All of these			
70.	Which one shows both +	M and –M					
	(a) $-CH = CH_2$	(b) –OH	(c) $-CH = O$	(d) –CN			
71.	$M(g) \rightarrow M^+(g) + e^-$	$\Delta H = 100 \text{ eV}$					
	$M(g) \rightarrow M^{2+}(g) + 2e^{-}$	$\Delta H = 250 \text{ eV}$					
	ΔH is the energy required	for ionisation. Which of	f the above statement is inc	correct?			
	(a) IE ₁ of M(g) is 100 eV		(b) IE ₁ of M ⁺ (g) is 150) eV			
	(c) IE_2 of M(g) is 250 eV		(d) IE ₂ of M(g) is 150	eV			
72.	Which of the following h	as largest radius?					
	(a) Mg^{2+}	(b) Na ⁺	(c) O^{2-}	(d) F ⁻			
73.	In which of the following	g have higher difference i	in the value of II^{nd} and III^{rd}	I.P. –			
	(a) $1s^2 2s^2 2p^6 3s^2 3p^1$	(b) $1s^2 2s^2 2p^6 3s^2$	(c) $1s^2 2s^2 2p^6 3s^1$	(d) $1s^2 2s^2 2p^6 3s^2 3p^2$			

- 74. Pauling's electronegativity scale is based upon experimental values of -
 - (a) Atomic radii (b) Bond energies (c) Ionization energies (d) Electron affinity
- 75. Atomic number 15, 33, 51 represents the following family
 - (a) Carbon family (b) Nitrogen family (c) Oxygen family (d) None
- 76. Energy levels A, B, C of a certain atom correspond to increasing value of energy, i.e., $E_A < E_B < E_C$. If $\lambda_1, \lambda_2 \& \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statement is correct :

	λ_1	C B		
	λ_2 λ_3	Ą		
	(a) $\lambda_3 = \lambda_1 + \lambda_2$	(b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$	(c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$	(d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
77.	Calculate the number of o to melt 5 g of ice (The en			at must be absorbed in order
	(a) 3.36×10^{18}	(b) 17	(c) 5.38×10^{22}	(d) 30.91×10^{-21}
78.	Find the ratio of frequence	<mark>cy of e⁻ in 1st orbit of H at</mark>	tom to 3 rd orbit of He ⁺ ion.	
	(a) $\frac{27}{4}$	(b) $\frac{4}{27}$	(c) $\frac{54}{4}$	(d) $\frac{27}{8}$
79.	Neutron is not present in	-		
	(a) Helium	(b) Protiu <mark>m</mark>	(c) Deut <mark>erium</mark>	(d) Tritium
80.	The number of radial not	<mark>lal</mark> surface i <mark>n 4d, 5s</mark> , 2p re	espectively	
	(a) 1, 4, 0	(b) 4, 1, 0	(c) 1, 4, 1	(d) 2, 4, 0
81.	The bonds present in N_2 C	D_5 are:		
	(a) Only ionic		(b) Covalent & coordi	nate
	(c) Only covalent		(d) Covalent & ionic	
82.	Maximum no. of hydroge	en bonds formed by a wat	er molecule in ice is:	
	(a) 4	(b) 3	(c) 2	(d) 1
83.	A sigma bond is formed	by the overlapping of :		
	(a) s-s orbital alone		(b) s and p orbitals alo	ne
	(c) s-s, s-p or p-p orbitals	along internuclear axis	(d) p-p orbital along th	e sides
84.	The d-orbitals involved in	n sp ³ d hybridisation is :		
	(a) $d_{x^2-y^2}$	(b) d_{z^2}	(c) d_{xy}	(d) d_{xz}
85.	The shape of 1_3^- is :			
	(a) Tetrahedral	(b) Linear	(c) T-shape	(d) Trigonal

- 86. The gas equation PV = nRT is derived from
 - (a) Boyle's law(b) Charle's law(c) both A & B(c) Gay-Lussac's law
- 87. An open ended Hg manometer is used to measure the pressure exerted by a trapped gas as shown in the figure. Atmospheric pressure is 749 m.m. of Hg. What is the pressure of the trapped gas-

- (a) 30.8 L; 27.7 L (b) 27.7 L; 30.8 L (c) 30.8 L; 30.8 L (d) 27.7 L; 27.7 L
- 90. There are 201 equidistant rows of spectators sitting in a hall. A magician releases laughing gas, N_2O (mol wt = 44) from the front and the tear gas (mol wt = 176) from the rear of the hall simultaneously. Which row of spectators will have a tendency to smile and weep simultaneously at first?
 - (a) At 134th row if the numbering of rows start from front.
 - (b) At 67th row if the numbering of rows start from front.
 - (c) At 134th row if the numbering of rows start from the rear.
 - (d) At 113th row if the numbering of rows start from front.

91.	Which of the following sta	tements is correct?)			
	(a) All bacteria are autotrophic					
	(b) All bacteria are heterot	rophic				
	(c) Mostly bacteria are het	erotrophic but som	e are au	totrophic		
	(d) All bacteria are photos	ynthetic				
92.	Bacteriophages are:					
	(a) Bacteria that are parasi	te on other bacteria	L	(b) Bacte	eria that are pa	rasite of viruses
	(c) Viruses that are parasit	e of bacteria		(d) Virus	ses that are par	rasite of crops.
93.	'Peptidoglycan' is a chara	cteristic constituent	t of the o	cell wall o	of:	
	(a) Eubacteria are unicellu	lar eukaryotes		(b) Bacte	eria and cyano	bacteria
	(c) Archaebacteria and euk	aryotes		(d) All n	nembers of 'm	onera' and 'protista'.
94.	Nuclear material without r	uclear membrane i	is observ	ved in:		
	(a) Mycoplasmas and gree	n algae		(b) Cyan	obacteria and	red algae
	(c) Bacteria ad cyanobacte	ria /		(d) Bacte	eria and green	algae.
95.	Heterocysts are found in c	ertain:				
	(a) Viruses	(b) Bacteria		(c) Cyan	obacteria	(d) Mycoplasmas.
96.	Monerans devoid of cell-v	vell are:				
	(a) Actinomycetes	<mark>(</mark> b) Cyanobacteria		(c) Myce	oplasma	(d) Bacteria.
97.	Which bacteria is utilized	<mark>in</mark> Gobar gas plant [:]	?			
	(a) Methanogens			(b) Nitri	fying bac <mark>teria</mark>	
	(c) Ammonifying bacteria			(d) Deni	trifying b <mark>acter</mark>	ia.
98.	Dinoflagellates have:					
	(a) One flagellum	(b) Two f <mark>lagella</mark>		(c) Three	e flagella	(d) Four flagella.
99.	In chlorophyta, mode of se	xual reproduction	is:			
	(a) Oogamy and anisogam	у		(b) Ooga	amy only	
	(c) Isogamy, anisogamy ar	i <mark>d</mark> oogamy		(d) Isoga	amy and anisog	gamy.
100.	<i>Spirogyra</i> has a :					
	(a) Haplontic life cycle			(b) Diplo	ontic life cycle	,
	(c) Haplobiontic life cycle			(d) diplo	biontic life cy	cle.
101.	Agar-agar which is used in	n culture medium a	s stabili	zing agen	t is obtained fr	om:
	(a) Red algae	(b) Green algae		(c) Kelp	S	(d) Bacteria.
102.	Zygotic meiosis takes plac	e:				
	(a) Selaginella	(b) Spirogyra		(c) Pinus	5	(d) Brassica.
103.	Nostoc is a :					
	(a) Green algae	(b) Yellow-green	algae	(c) Blue-	-green algae	(d) Red algae.

104.	Floridean starch is presen	t in:		
	(a) Rhodophyceae	(b) Chlorophyceae	(c) Cyanophyceae	(d) Cyanobacteria.
105.	All fungi are always:			
	(a) Parasites	(b) Autotrophs	(c) Heterotrophs	(d) Saprophytes.
106.	Dicaryotic cells are forme	ed in:		
	(a) Phycomycetes	(b) Ascomycetes	(c) Basidiomycetes	(d) In both (b) & (c).
107.	Lichens are good indicate	ors of:		
	(a) Air pollution	(b) Water pollution	(c) Soil pollution	(d) All of these.
108.	Mycorrhiza is:			
		root system of higher plant		
		ium with the roots of legun	1	
		on of plant roots and certair	n fungi	
	(d) An association of alga			
109.	Black rust of wheat is cau	ised by a member:		
	(a) Mucor	(b) Aspergillus	(c) Puccinia	(d) <i>Rhizopus</i> .
110.	Reserve food material in a	fungi is:		
	(a) Glycogen	(b) Starch	(c) Sucrose	(d) Glucose.
111.	Cell wall of <i>Mucor</i> is made	<mark>le</mark> up of:		
	(a) Chitin	(b) Cellulose	(c) Pectin	(d) Mucilage.
112.	Sporangiospores of Muco	<i>r</i> are:		
	(a) Haploid	(b) Diplo <mark>id</mark>	(c) Triploid	(d) Polyploid.
113.	During the formation of b	<mark>re</mark> ad it bec <mark>omes por</mark> ous du	e <mark>to releas</mark> e of CO ₂ by the	action of:
	(a) Yeast	(b) Bacte <mark>ria</mark>	(c) Virus	(d) Protozoans.
114.	Gentic material in TMV i	s:		
	(a) DNA	(b) RNA	(c) Capsid	(d) Both DNA and RNA
115.	Credit for first crystalliza	tion of viru <mark>s goes to:</mark>		
	(a) Louis Pasteur	(b) D. Iw <mark>anowski</mark>	(c) S. Luvia	(d) W.M. Stanley.
116.	Protein coat of virus is ca	lle:		
	(a) Capsid	(b) Capsomere	(c) Viroid	(d) Prophage.
117.	Interferons are synthesize	d in response to:		
	(a) Mycoplasma	(b) Bacteria	(c) Viruses	(d) Fungi.
118.	The process which cannot	t take place in the absence	of viruses:	
	(a) Transduction	(b) Translocation	(c) Conjugation	(d) Transformation.
119.	Which is not a viral disea	se?		
	(a) Chicken pox	(b) Rabies	(c) Polio	(d) Leprosy.

120. The moss plant is a :

	(a) Sometimes gametophyte and sometimes sporophyte						
	(b) Predominantly gametophyte with sporophyte attached to it						
	(c) Gametophyte						
	(d) Sporophyte.						
121.	To which group would vasculature?	you assign a plant wh	hich produces spores, en	nbryo but lack seed and			
	(a) Algae	(b) Fungi	(c) Bryophyta	(d) Pteridophyta.			
122.	Which among the following	ng is called 'peat moss'?					
	(a) <i>Funaria</i>	(b) Porella	(c) Pellia	(d) Sphagnum.			
123.	The female sex organs in t	pryophytes are called:					
	(a) Oogonia	(b) Antheridia	(c) Archegonia	(d) Ascogonia.			
124.	The Antherozoids of Funa	vria are:					
	(a) Aciliated	(b) Biciliated	(c) Multiciliated	(d) Monociliated.			
125.	Which of the following ha	s a well developed game	tophyte:				
	(a) <i>Pinus</i>	(b) Mango	(c) Mentha	(d) Moss.			
126.	Fern plant is a :						
	(a) Haploid gametophyte	(b) Diploid gametophyte	e (c) Diploid sporo <mark>phyte</mark>	(d) Haploid sporphyte.			
127.	A water-fern which is used	<mark>l</mark> as a green manure in ric	ce fields is:				
	(a) Salvinia	(b) Mucor	(c) Aspergillus	(d) Azolla.			
128.	Pteridophytes differ from l	bryophyte <mark>s in havi</mark> ng:					
	(a) Vascular tissues		(b) Archegonia				
	(c) Motile Antherozoids		(d) Alternation of gener	ations.			
129.	In which stage meiosis tak	es place in <i>Pteridium</i> ?					
	(a) During the spore germi	nation	(b) During the spore for	mation			
	(c) During the gamete form	nation	(d) During the organ for	mation in prothallus.			
130.	The endosperm in Gymnos	sperms is:					
	(a) Haploid	(b) Diploid	(c) Triploid	(d) Tetraploid.			
131.	The largest known ovules,	largest male and female	gametes and largest plants	are found among:			
	(a) Dicotyledonous plants		(b) Gymnosperms				
	(c) Angiosperms		(d) Tree ferns and some	monocots.			
132.	Fruits are not formed in gy	mnosperms because:					
	(a) Seeds are not formed		(b) Ovules are naked				
	(c) Fertilization is absent		(d) Seeds fall down in li	ittle stage.			
133.	Which one of the followin	g is a living fossil?					
	(a) Ginkgo	(b) Cedrus	(c) Pinus	(d) Metasequoia.			

134. Which of the following plant produces seeds but not flowers? (a) Maize (b) Mint (c) Peepal (d) Pinus. 135. In which of the following groups would you place a plant, which produces embryo, vascular tissues, seeds and fruits? (a) Angiosperms (b) Bryophytes (c) Gymnosperms (d) Pteriophytes. 136. Totipotency in plant cell was discovered by : (a) Steward (b) Leeuwenhoek (c) Haberlandt (d) Henrietta Lacks 137. The main difference between active and passive transport across cell membrane is that: (a) passive transport is non selective (b) active transport occurs more rapidly than passive transport (c) passive transport is gradient based while active transport is energy based against concentration gradient (d) passive transport is confined to anions while active transport is for cations only. 138. Match List I (Substructures) with List II (Functions) and select the correct answer using the codes given below the lists: List-II List-I (Substructures) (Functions) A. Nucleosome Cell adhering junctions 1. B. Tubulin 2. Battery of degradative enzyme C. Desmosomes 3. Structural units of chromatin 4. Protein units of microtubules D. Lysosomes 5. Oxidative phosphorylation Codes: (a) A \rightarrow 3, B \rightarrow 4, C \rightarrow 1, D \rightarrow 2 (b) A $\rightarrow 2$, B $\rightarrow 5$, C $\rightarrow 4$, D $\rightarrow 3$ (d) $A \rightarrow 2, B \rightarrow 4, C \rightarrow 1, D \rightarrow 3$ (c) $A \rightarrow 3, B \rightarrow 5, C \rightarrow 4, D \rightarrow 2$ 139. Some cellular structures bounded by single or double membranes while some other without a

39. Some cellular structures bounded by single or double membranes while some other without a membrane. Match the organelle in list-I with the nature of membrane in list-II and select the correct answer using the codes given below the list:

List-I	List-II
A. Mitochondria	1. Without membrane
B. Lysosomes	2. Single membrane
C. Ribosomes	3. Double membrane
D. Nucleus	
Codes:	
(a) $A \rightarrow 1, B \rightarrow 2, C \rightarrow 3, D \rightarrow 4$	(b) $A \rightarrow 3, B \rightarrow 1, C \rightarrow 1, D \rightarrow 1$
(c) $A \rightarrow 3, B \rightarrow 2, C \rightarrow 1, D \rightarrow 3$	(d) $A \rightarrow 2, B \rightarrow 3, C \rightarrow 1, D \rightarrow 3$

140.	140. Match the cell organelles given in list-I with cellular processes in list-II:				
	List-I		List-II		
	A. Lysosomes	1.	Protein synthes	Sis	
	B. Ribosomes	2.	Hydrolytic acti	ivity	
	C. Smooth endoplasmic Reticulum	3.	Steroidogenesi	S	
	D. Centriole	4.	Glycolytic acti	vity	
	E. Chromosomes	5.	Respository of	genetic information	
		6.	Formation of s	pindle apparatus	
	Codes :				
	(a) $A \rightarrow 2, B \rightarrow 1, C \rightarrow 3, D \rightarrow 6, E \rightarrow 5$	(b)	$A \rightarrow 6, B \rightarrow 3$	$, C \rightarrow 4, D \rightarrow 5, E \rightarrow 1$	
	(c) $A \rightarrow 1, B \rightarrow 4, C \rightarrow 3, D \rightarrow 6, E \rightarrow 1$	(d)	$A \rightarrow 4, B \rightarrow 3$	$, C \rightarrow 1, D \rightarrow 2, E \rightarrow 3.$	
141.	Ribosomes are so called because of high:				
	(a) ribose content	(b)	ribonucleic acid	l content	
	(c) both 'a' and 'b'	(d)	none of these		
142.	Which one of the following remain absent in prok	aryot	tes?		
	(a) Nuclear membrane	(b)	Ribosome		
	(c) Cell wall	(<mark>d)</mark>	Plasma membra	ine.	
143.	Two sister chromosomes remain attached by mea	ins of	2.		
	(a) Chromocentre (b) Chromatids	(c)	Spindle fibre	(d) Centromere.	
144.	In which stage the chromosomes appear thin and	lon <mark>g</mark>	thread like:		
	(a) Zygotene (b) Leptotene	(c)	Pachytene (1997)	(d) Prophase.	
145.	A chromosome having substerminal centromere i	s:			
	(a) Acrocentric (b) Submetacentric	(c)	Telocentric	(d) Metacentric.	
14 <mark>6</mark> .	The suffix S in ribosome unit indicates:				
	(a) Sedimentation coefficient	(b)	<mark>Solubi</mark> lity		
	(c) Surface area	(d)	Size.		
147.	Prokaryote is characterized by:				
	(a) Absence of nucleolus				
	(b) Absence of nuclear envelope				
	(c) Dispersed DNA and lack of membrane bound	l orga	melles		
	(d) All the above.				
148.	Plasmalemma prevents escape of Na ⁺ and K ⁺ to:				
	(a) Cause disruption in neighbouring cells throug	sh thr	ough desmosom	es	
	(b) Maintain electrostatic neutrality of cells				
	(c) Maintain cell sap				
	(d) All the above.				

149.	The major importance of r	neiosis lies in:		
	(a) Development of mutat	ions		
	(b) Sexual reproduction			
	(c) It transfers chromosom	nes through mitosis		
	(d) It maintains chromoson	me number generation a	after generation.	
150.	In mitotic metaphase, each	chromosome is:		
	(a) One	(b) Two	(c) Three	(d) Four.
151.	Autolysis is connected wit	h:		
	(a) Ribosome	(b) Kinetosome	(c) Lysosome	(d) Golgi apparatus.
152.	Which of the following dis	saccharides will give tw	vo molecules of glucose	on hydroxylation
	(a) Maltose	(b) Sucrose	(c) Lactose	(d) None
153.	Which is very most structu	ral part of the body		
	(a) Protein	(b) Carbohydrates	(c) Lipid	(d) Nucleic acid
154.	Which of the following su	gar is found in ATP		
	(a) Deoxyribose	(b) Ribose	(c) Trehalose	(d) Glucose
155.	Deficiency of protein lead	s to		
	(a) Rickets	(b) Scurvy	(c) Kwashiorkor	(d) Carotenemia
156.	Lactose is composed of –			
	(a) Glucose + galactose	(b) Glucose + fructose	(c) Glucose + glucose	(d) Glucose + mannose
157.	True statement for cellulos	se molecule		
	(a) $\beta - 1' - 4''$ linkage, unbr	ranched	(b) β-1'-4" linkag <mark>e</mark> ,	branched
	(c) $a - T - 4$ " linkage, brar	nched	(d <mark>) β–1'–</mark> 6" linkag <mark>e u</mark>	inbranched
15 <mark>8</mark> .	Contractile protein is			
	(a) Actin	(b) Myosin	(c) Troponin	(d) Tropomyosin
159.	Variations in proteins are o	due to –		
	(a) Sequence of amino aci	ds	(b) Number of amino	acids
	(c) R - group		(d) None	
160.	The antibodies are			
	(a) γ (Gamma) - globulins		(b) Albumins	
	(c) Vitamins		(d) Sugar	
161.	Sweetest sugar among the	naturally occuring suga	ar —	
	(a) Glucose	(b) Fructose	(c) Sucrose	(d) Saccharine
162.	Histone is a basic protein o	due to –		
	(a) Alanine & glycine		(b) Methionine & series	ne
	(c) Tryptophan & tyrosine	,	(d) Lysine & Arginine	

163.	3. Lipid derivatives which occur in faecal material –							
	(a) Cholesterole	(b)	Ergesterole	(c) Lan	oline	(d) Coprosterole	
164.	Example of phospho pre-	otein	is					
	(a) Mucin	(b)	Fibrinogen	(c) Cas	ien	(d) Myosin	
165.	Sugar with five member	red ri	ng called					
	(a) Pyranose	(b) :	Furanose	(c) Dex	trorotatory	(d) Laevorotatory	
166.	Which sugar occurs onl	y in r	nammals					
	(a) Trehalose	(b)	Galactose	(c) Lac	tose	(d) Mannose	
167.	Carotenoids composed	of un	its –					
	(a) Fatty acids	(b) .	Amino acids	(c) Isop	orene	(d) Pyran	
168.	Sugar which occurs in h	aemo	olymph of insec	ts				
	(a) Chondriotin	(b) 2	Heparin	(c) Tre	halose	(d) Maltose	
169.	Which sugar does not g	ive B	enedict's test –					
	(a) Glucose	(b)	Maltose	(c) Fru	ctose	(d) Sucrose	
170.	Amylose and Amyloped	etin el	hains occur in –	-				
	(a) Glycogen	(b)	Starch	(c) Cel	lulose	(d) Chitin	
171.	All lipids are –							
	(a) Composed of fatty a	cids		(b) Trig	glycerides		
	(c) Insoluble in water			(d) All	the above		
172.	Which of the following	does	not con <mark>tain me</mark>	tal:-				
	(a) Glycoproteins	(b) F	Ferritin	(c) <mark>Cyto</mark>	ochromes	(d) Chromoproteins	
173.	The catalytic efficiency	of tw	vo diffe <mark>rent enz</mark>	ymes c	an <mark>be c</mark>	compared by	the –	
	(a) The Km value			(b) The	<mark>pH optimum</mark>	n value	
	(c) Molecular size of th	e enz	zyme	(d) For	mation of the	product	
174.	The graph given below	show	vs the effect of s	substra	te conc	entration on	the rate of reaction of the enzym	ne
	green-gram phosphatase	2 .						

What does the graph indicate?

- (a) The rate of enzyme reaction is directly proportional to the substrate concentration
- (b) Presence of an enzyme inhibitor in the reaction mixture
- (c) Formation of an enzyme-substrate complex
- (d) At higher substrate concentration the pH increases.

175. Which is not true for enzymes –

- (a) Enzymes are proteins with complex structure
- (b) Enzymes can be regulated with specific molecule
- (c) Enzymes are much sensitive to changes in pH and temperature
- (d) Enzymes can catalyse diverse reactions
- 176. An enzyme that can stimulate germination of barley seed is
 - (b) Lipase (c) Protease (d) Invertase (a) α -amylase
- 177. An organic substance bound to an enzyme and essential for its activity is called
 - (a) Coenzyme (b) Holoenzyme (d) Isoenzyme (c) Apoenzyme
- 178. The chemical reaction indicated in the graph is –

- (a) Exergonic (b) Endergonic (c) Isothermal (d) Endothermal
- 179. A test tube contains potato extract. To it a small quantity of amylase and a drop of iodine solution is added. The tube is incubated at 70°C for 10 mins. and then at 37°C for 5 mins. Mark the expected result –
 - (a) The solution will show blue colour which will fade at the end of 15 mins
 - (b) The solution will remain colourless throughout the experiment
 - (c) The solution will remain blue throughout the experiment
 - (d) The solution will be blue at the end of 10 mins and colourless at the end of 15 mins
- 180. Addition of substrate and inhibitor to the enzyme molecule depicted below will result in –

(a) Non competitive inhibition

- (b) Competitive inhibition
- (c) Reversible competitive inhibition
- (d) Feed back inhibition

ANSWER

PHYSICS									
1	2	3	4	5	6	7	8	9	10
В	С	В	D	С	С	С	Α	С	D
11	12	13	14	15	16	17	18	19	20
D	Α	В	В	Α	В	Α	Α	Α	В
21	22	23	24	25	26	27	28	29	30
В	С	Α	С	Α	D	В	С	В	С
31	32	33	34	35	36	37	38	39	40
В	Α	В	В	В	D	D	Α	С	D
41	42	43	44	45					
Α	С	С	Α	В					
CHEMISTRY									
46	47	48	49	50	51	52	53	54	55
В	Α	В	В	С	D	С	С	D	В
56	57	58	59	60	61	62	63	64	65
Α	С	D	В	С	Α	В	Α	С	С
66	67	68	69	70	71	72	73	74	75
Α	Α	Α	D	Α	С	С	С	В	В
76	77	78	79	80	81	82	83	84	85
В	С	Α	В	Α	В	Α	С	В	В
86	87	88	89	90	_				
С	С	D	Α	Α					
BIOLOGY									
91	92	93	94	95	96	97	98	99	100
С	С	В	С	С	С	Α	В	С	Α
101	102	103	104	105	106	107	108	109	110
Α	В	С	Α	С	D	Α	С	С	Α
111	112	113	114	115	116	117	118	119	120
Α	Α	Α	В	D	Α	С	Α	D	В
121	122	123	124	125	126	127	128	129	130
С	D	C	В	D	C	D	Α	В	Α
131	132	133	134	135	136	137	138	139	140
В	В	Α	D	Α	C	С	Α	С	Α
141	142	143	144	145	146	147	148	149	150
В	Α	D	В	Α	Α	D	D	D	В
151	152	153	154	155	156	157	158	159	160
С	Α	Α	D	С	Α	Α	Α	С	Α
161	162	163	164	165	166	167	168	169	170
В	D	D	С	В	В	С	С	В	В
171	172	173	174	175	176	177	178	179	180
D	Α	D	Α	D	Α	Α	Α	С	Α